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ABSTRACT 

From a tracking station of known geocentric location,   the measurements 
of the azimuth and elevation of a satellite at three instants of time  t.,   t^,   t^ 

provide tracking data sufficient for a preliminary determination of the orbit 

of the satellite about the earth.     From such data,   the components (in a geo- 

centered inertial coordinate system) of the position vectors  f.   r_, ?_ (corres- 
ponding to  t.,   t   ,   t-,) of the satellite may be calculated and in terms of these 
components,   all of the orbital elements may be expressed.     In view of the 
given positional data of the tracking station and the directional data of the 
satellite's position,   only the slant ranges   p.,   p.,   p,   are needed to complete 
the determination of the vectors   r.,   r^,   r,.     To solve for the slant ranges, 

an iterative procedure is introduced whereby successive systems of linear 
equations are solved whose solutions rapidly converge to   p.,   p   ,   p^.    Sub- 
sequently,   all of the orbital elements are easily computed.     Fundamental 
use is made of the formulas of Gibbs (see Reference) which provide approxi- 

mate values of the ratios   Bj./B,-,,   B.^/B,,,   in which   B.     denotes the area ci      li        1^13 ij 
of the triangle bounded by the vectors   f.,   r.,   f. - f. .     The method has been B i       j       j        i 
tested for accuracy by applying it to compute the orbital parameters of 
many parameter families of hypothetical orbits.     On comparing the com- 
puted values of the orbital elements with the corresponding hypothetical 
values,   the differences were found to be exceedingly .small.     The average 
machine time for computing all elements of an orbit was approximately 
0. 05 minute. 
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I.       DYNAMICAL BASIS OF THE METHOD 

A new method is introduced in the present paper for the determi- 

nation of satellite qrbits (or missile trajectories) about a spherical 

earth by means of angular measurements only. 

Let s,   p  denote the vectors from a tracking station at time t to 

the geocenter and the orbiting satellite,   respectively.    The satellite 

position vector r relative to a geocentered inertial frame is therefore 

defined by the vector equation 

? = p - 5 (1) 

Let p,   p denote the slant range of the vehicle from the tracking 

station and the unit vector in the direction of p,   respectively,   so that 

Equation (1) may be written in the form 

f = Dp - i (2) 

Let vector and scalar functions of t.,   1=1,   2,   3 be denoted simply 
1 - A - A 

by the use of the subscript i.     Examples are s (t.) =  s. ,   P (t.) =   o. . 

Exceptions to the use of this notation will be the time intervals ^o " ^i* 

t- - t2 which will be denoted by A. ,   Äu,   respectively. 

Expanding r^ by means of a Taylor's series,   we have in terms of 

r. and its derivatives 

2        -     A 3     --•   A 4 
I   ~! rl *i rl Al 

r2 = r (tj + Aj) = rl + r^ +  —j  +-^  +      24       +...      (3) 

On substituting the dynamical relation 

"fl 
r 

'! = k K) 
1 
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into Equation (3),   the equation becomes 
2\ -    A 3 

M( 

In view of Equation (5),   the magnitudes r. and r- (of r. and IO 

differ by terms of order at least A        It follows that the right member 
of (8) is of order k* - A^ if Aj t L^   but it is of order Aj3 if 
A   ■ Aj,.    Consequently,   in either case,   if A    and A     are both small, 
the approximation results 

(5) 

Vector multiplying the members of (5) by r. yields the equation 

rj x r2 = (rj x Tj) Aj   + (TJ X TJ)   —^— + .   .   . (6) 

Similarly, x 
A  3 

r2 x r3 = (r2 x T2 ) A2 + (f 2 x 72 ) —g— + .   .   . (7) 

Because of constancy of angular momentum (r. x T.  = r2 xT-),  the 
following equation results from a combination of Equations (6) and (7), 

rl x r2 r2 X r3 
—3 —a— 01 2 

^(^■^•'i^-^i-) (8) 
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rl x r2 r2 x r3 

Let A., denote the area bounded by two position vectors r.,   r. and that 

portion of the orbit between f.,   r. ,   i,   j = 1.   2,   3,   i < j,   and let B.. 

denote the area of the triangle bounded by the vectors r.,   r.,   r. - r.. 

The constancy of the rate of description of area assures that A.^/Ai  ■ 

A23/A2.    From (9),   Bi2^i "  B23^2'     The accuracy of <9^   therefore 

depends upon how closely the ratio A.^/Apo   is approximated by the 

ratio B.yf&zi'    Closed form expressions for the ratios A.^/A-    and 

B.2/B?~ can be derived in terms of orbit eccentricity and the eccentric 

anomaly angles associated with the positions of the vectors r«,   r**   fy 

They are 

A,2 E2 - E.  - e(sin E2 - sin E.) 

XT7       E3 - E2 - e (sin E, - sin E2) 

B12        sin (E2 - E.) - e (sin E2 - sin E. ) 

"BTT       sin (E, - E2) - e (sin E^ - sin E-) 

where 
2 ,,        2,1/2 2 . 2 1/2      r 1 

A.. =    a    il 'e   i     IE. - E. - e(sin E. - sin E.)     . 
xj 2^ J   j        i        l j x'] 

(9) 

(10) 

(11) 

2/i        2\1/2     f 1 
B.. = a   u I e  ;      Isin (E. - E.) - e(sin E. - sin E.)     . 

xj 2 I J i J I' J 

i.   j = 1.   2,   3 ; i $ j. 
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Moreover 

2 ..         2.1/2 .                                                , 
A.. - B.. =   a    U  I e   ;  E. - E. -  sin(E. - E.)               (12) 

ij         ij                  2 [   j         i             *   J         I'I 

2 .,         2.1/2 , 
<   a    0   - e   ) /F   -  E \3 
< n  (Ej   Ei, 

Suppose that,   from a tracking station,   angular measurements are made 

of the line of sight to an orbiting vehicle at times t-,   t_,   t,.    From these 

measurements,   the inertial components of the corresponding unit vectors 

p.,   P21   p^ may be determined.    The corresponding system of equations 

ri = ^i Pi "  8i (i= l' 2'   3) (13) 

may be written,   in which the six vectors p.,   s. (i = 1,   2,   3) are known. 

To solve for the unknowns p.,  p?,   p~,   use is made of Equation (9) 

together with the equation obtained from (9) by making the substitution 

'rl  'r2   Al    LZ 

\ ri r I      J   A3 " LZ 

(14) 

where   A^ = A.   + A 2,   e. g. , 

rl x r3   .    r3xr2    .    r2xr3 
3—   =       -A "        A (l5) ö3 a2 aZ 
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Since the vectors r.,   r-,   r, are coplanar,   constants c.,   c-,   c    exist, 

such that 

c,  rl + c2r2 + C3 r3 = 0 (16) 

Vector multiplications of Equation (16),   first by r2 and then by r,, 

yield in virtue of (9) and (15) (for the equality sign) c 1 A .  = c3 ^7 • 

c.  A, = - c^ A-,   so that (16) assumes the form 

&2 rl -  {*l + A2)r2 +  Aj  ;3 = 0 (17) 

Substituting from Equation (13) into Equation (i7) yields the vector 

equation 

VlPl  - (A1 + *Z)P2h' A1P3P3= ^"sl  -<VVS2 + VS3 (18) 

The system of equations obtained from the components of vector Equation 

(18) possesses a unique solution p.,   p?,   p^ if and only if the determinant 

(p   ,   p-,   p^) £ 0,   and not all of the components of the vector A    s    - 

(A.   + Ap) s^ + A. s- vanish.     The solutions assume the forms 

(Ö,   p2,   p3)                  -^(Pj.ä.   p3)                  A2(p1,p2,   ä) 
Pl = D '    P2 =  S^D P3=  TS^D  (19) 

in which A-ä = A^ ■,  -  ^o ^^^^l^V   ^>=  ^1 *   ^2'   P^'    ^^e c011^^^011 

of the vanishing of   0   for non-vanishing values of A.,   &? implies that 

the three positions of the tracking station corresponding to the times 

t.,   t?,   t, are collinear.   This can happen on the surface of the earth 

only if the tracking station is fixed in inertial space (i.e. ,   ■ (t.) - 

s (t?) = s (t,)].   The only points where this could occur are at the poles. 
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Substituting the calculated values for p.,   P2,   p, (from (19)) into 

Equations (13) and performing the indicated arithmetic operations 

results in the numerical values of the components of the vectors r., 

r_,   r^.    The orbital elements in turn can be easily calculated in 

terms of these.    In fact,   if 0. denotes the angle from the line of 

intersection of the orbit plane and the  z   = 0 plane to the vector r. 

(oriented so that 0.   < 02) it may be easily shown that 

( 

0.  = cos 
i 

-(r.)^^ x r2)2 + (ri)2 {rl x ^^ 

T7T- 
i(("rl X 

z—2 ^ —T 
r2)1  + {rl x r2)2 

.   (i = 1,   2,   3) (20) 

in which r. denotes the magnitude of r. and a subscript j (j =  1.   2) 

following a vector enclosed in parentheses signifies the jth component 

of the vector.     Moreover,   the equation of the orbit may be written 

in the form 

— = A + B cos 0 + C sin 0 r (21) 

2 2 2 in which A = 1/a (1 - e   ); B = e cos 0  /a (I - e   ); C = e sin 0  /a (1  - e   ). 
P P 

Substituting into Equation (21) the values for 0.,   02,   0, given by (20) and 

the values for r   ,   r_,   r..,   three linear equations in A,   B,   C result 

which can be readily solved.     Moreover,   if fi denotes the angle from the 

x-axis to the line of nodes,   the elements a,   e,   0   ,   Q   are expressible 

by means of the formulas 

A a = "I 2 T" ' A   - (B^ + CT) 

0    = tan 
P 

-1  C 
-*' 

e = (B2 ♦ C2)lU 

CJ  = tan -i JlLliili 
<f 1 x *2h 

(22) 

i: 
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II.     HIGHER ORDER APPROXIMATIONS 

The accuracies of Equations (9) and (15) are generally improved by 

reducing the time intervals between successive observations.     Equation 

(9) becomes exact for circular orbits if A.   = Au.    For near circular 

orbits it is therefore advantageous to choose A,  = ^2« 

The method of this paper can be modified so that it can be  satis- 

factorily applied to cases in which the time intervals A . ,   Ly are much 

larger than formerly admissable,   by making use of equations derivable 

from the formulas of Gibbs (see Reference) for the ratios of the 

triangular areas.     In the terminology of this paper these equations are to 

third order terms 

B
23       A2 [,t^   Al,A2 + Vt^/j.3--^ (A, V4) +    .     .     . 

B 
12 

'S 13 

^1 M 
6r: 

l   ^-^   ^(A,  + Lx) '2x"l 
(24) 

(A2 A3 - Ap + 

Equations (9) and (15) are first order approximations of the exact 

equations 

rl x r2        r2  X   r3 rl x r3 
"5 12 "5 23 T 13 

(25) 
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in which the principal parts of the ratios B^,/ B. ,,   B. 2/ B. , are 

employed.     It follows that if good estimates of r.,   r? can be found, 

the substitutions of the ratios B.2/B^,,   B2,/B   , (defined by (24)) 

for A./A^,   & J L. in the right members of Equations (19) will lead 

to much more accurate positional determinations.    The following 

iterative process serves to determine good "initial estimates" of 
3 3 4 r.,   r«.    Since r- = r.  + i*.   A.  it follows that 1/r.  -  l/r? - 3r.A1/r.. 

Consequently,   the third terms of the right members of Equation 
« aCc « 

(24) are of third order in the A's.     Let B . ,,   B. ?,   B^,    be defined 

such that 

B 23 
IT- 
13 ^3 

1 + TS *I^*^ 

12 

B 13 

"1 

"=1 1+   TS     ^^   +A3' 6r 

(26) 

Select an estimate p ~       of the slant range p2 and calculate the 

corresponding value ry   '   by means of the equation 

(1) _ 
% P2 (27) 

(1) *    /   *      (1) Substitute r? = r^J      in Equation (26) and calculate the ratios (B2-/B.,)     » 

(B 12/B . ,)'^).    The first and second equations o^" (19) with A / A,   and 

A2/A3    replaced by (B   2/B 23)1   ; and (B23/B 3)
v   ',   respectively,   yield 

computed values for p    and p ,   say p.       and      pu      .     Thus 

v! 
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.(2) - 
(a<1),   p2.   P3) (2) B!,V^ (P,. ä<l>.p3) 23 

B 13 

1 (28) 

in which D = iPy   P2'   p3^ and 

■o^-l 

These slant range values are then used to calculate the corresponding 

values r.      ,   r?      by means of the equations 

rW-    |p(2^ 1       ?! " sl 
(2)     I Ä (2) - 

r2       =    P2       P2 *  S2 (29) 

(2) (2) The values r.       ,   r are then substituted in Equation (24) to 
(2) (2) determine ratios which are denoted by (B. ^/B?,)       and (B?^/B. .,)    ', 

This iteration process is continued making use of Equations (28), 

(29),   (24) until the differences (B.^/B^,)^ - (B.JB^)^ + ^ and 

(B23/B13)U, - (B23/B13) become negligible.    The values of the 

ratios B.^/B^,, B^^/B.,, thus determined are used for the final 

determinations of the slant ranges p., p?, p, and position vectors 

r.,   r?t   r, by means of the equations 

^1 = 
(Ö,   FS»  P^) 2'  ^3' 

15 •  p; 
-B 23 
"E- 

13 

(Pj.   ffi   P3) 
 D  

B23 (?!■   P2.   CT) 
^3 -   B72  D  

in which 
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and 

B13   - B12    - 

r.    =   p. p.   -   s.   ,      i   =    1, 2, 3 (31) 

III.   RESULTS   OF DOUBLE PRECISION COMPUTATIONS OF ORBITS; 
SCOPE AND ACCURACIES OF THE DETERMINATIONS 

The method of orbit determination was programmed for double pre- 
cision computation on a digital computer.    The means of testing the accu- 
racies of the method consisted of computing the orbits (all of the orbit 
parameters) of various hypothetical orbits by using directional data, 

times of observation,   and known positions of tracking stations,   and com- 
paring the computed results with the corresponding hypothetical values. 
A great multiplicity of hypothetical cases were considered in which the 
elements  B, Ju, a, e, G., 6_, 6      9   , a were selected from the following 
systems   B r 5°,  15°, 25°, 35° 90°;   uu = 4°.  12°, 20°, 28° 68°; 

a = 3922. 33, 4443. 94, . . . ,  16,000 nautical miles;   e  = 0. 0. 0125, 0. 0150, 
. . . , 0. 85;  {By e2, e3)  = (6°, 6. 53°, 7. 07°),   (18°, 18. 53°, 19. 07°)  
(102°,  102. 530. 103. 07°) (0°, 2°, 4°) (0°, 5°, 6°);   9     = -24°, 
-12°, 0°,  12°, 24° 60°;   a = 10(j-l),   j = 1. 2, 3 13.    The sym- 
bols,   a, e  have their usual connotation,   8, uu denote latitude angle and the 
angle between the line of ascending node and the meridian plane of the 

tracking station at the time of the initial observation; 6     is the true 
anomaly angle of perigee,   8      G      G-,   are the true anomaly angles of the 
satellite positions which correspond to times  t   , t-, t_   and a  is the in- 
clination angle of the orbit plane.    In addition to the multiplicity of cases 
enumerated,   similar systems of cases were considered which are near 
to a critical case.    The critical case,   in which the method is not applic- 
able,   occurs when the vectors from the tracking station to the three 
positions observed at t. , t-, t     are coplanar.    In each of the cases which 
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will be termed a near-critical case,  the tracking station lies in the orbit 

plane at the time of one of the three observations.    The accuracies of the 

results pertaining to the near-critical cases are significant because many 

of these cases were found to require double precision computations.    The 

accuracies of the cases which are not near-critical are generally better 

than those of the near critical cases.     But even for the near-critical cases, 

the difference s between the hypothetical values of the elements and the 

values computed (from the observations) are very small.    It will suffice, 

therefore,   for the purposes of this report to describe the findings which 

pertain to the near-critical cases.     Multiple parameter families of such 

cases were considered in which the ranges for the elements were as 

follows; 9  = 10°. 20° 90°;   a = 10°, 20°, ,  120°;   uu = sin'    (tan  S 

cot   a);   ei   = sin"1 (sin 9 esc a);   0     = -24°,  -12°, 0°,  . 

0. 53°; 9-   = e2 -» 0. 54°;   a = 3922. 33,  . . . ,  16, 000 nautical miles;   e = 0   , 

, 60   ; 02 = Oj   + 

0.0125, 0.0150, 20. 

The accuracies of the orbit determinations are,   in general,   better 

than those of the following typical near-critical cases: 

Actual Orbit Data 

Case (1):       Ct = 30 a 

a = 3922. 32999 n.   mi. a 

e = 0.03 e 

0 r -24° e 
P 1 

Pj = 403. 359695 n.   mi. p 

P2 = 405. 10132 n.   mi. 0. 

p. = 409. 15499 n.   mi. p. 

9, . 6° 

0, = 6.53° 8. 

Computed Orbit Data 

= 29.999952° 

= 3922. 2483 n.   mi, 

= 0.029984383 

= -24.01641° 
» 

= 403. 58686 n. mi. 

,  = 405. 09120 n. mi. 

(  = 409. 14477 n. mi. 

= 6.000095° 

= 6. 530084J 

9 = 7.07 8 = 7.070072 
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Case (2) a 
a 

e 

pi 

P3 
9 

P 
ei 
e2 

= 10" 

= 3922. 32999 n. mi. 

= 0.03 

= 914. 40702 n. mi. 

= 922. 4266 n.mi. 

= 931. 58933 n.mi. 

= -12° 

= 18° 

= 18.53° 

= 19.07° 

a 
a 

e 

P, 

e 
i 

ei 
e. 
e. 

= 10.000069 

= 3922. 2591 n.mi. 

= 0.029986499 

= 914. 385 n. mi. 

= 922, 4048 n. mi. 

= 931. 5673 n. mi. 

= -12.01017° 

= 18.001388° 

= 18.531377° 

= 19.071367° 

Case (3) a 
a 

e 

P, 

=    20* 

e 
i 

9i 
e. 

e. 

= 3922. 32999 n.mi. 

= 0.03 

= 157. 92217 n.mi. 

= 158. 42123 n.mi. 

= 158. 98764 n.mi. 

= 12° 

= 42° 

= 42.53° 

= 43.07° 

a 
a 

e 

P, 

6 
1 

6 

0. 

0 

= 20.000279 

= 3922. 2658 n.mi. 

= 0.029988690 

= 157. 91886 n. mi. 

= 158.4179 n.mi. 

= 158. 9843 n. mi. 

= 11.991499° 

= 42.000836° 

= 42.530828° 

= 43.070818° 

Case (4) a 
a 

e 

Pl 
p2 
P3 
6 

P 
9i 

0. 

= 120u 

= 3922. 32999 n.mi. 

= 0.03 

= 2636. 21 54 n. mi. 

= 2650. 1334 n.mi. 

= 2664. 5699 n.mi. 

= 12° 

= 42° 

= 42.53° 

= 43.07° 

a = 120.000165 

a = 3922. 3517 n.mi. 

e = 0.030003371 

p. = 2636. 2390 n. mi. 

p. = 2650. 1571 n. mi. 

P- = 2664. 5938 n. mi. 

0 = 11.998896° 
p o Oj = 41.999988° 

02 = 42.529991° 

0O = 43.069993° 
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Case (5) a 
a 

e 

P, 

0 
I 

e. 
e. 

= 40° 

= 3922.32999 n. mi. 

= 0.01 

= 779. 80816 n. mi. 

= 806. 28246 n. mi. 

= 833. 64203 n. mi. 

= 60° 

= 100° 

= 100.53° 

= 101.07000° 

a 
a 

e 

P^ 

9 

= 39.999986° 

= 3922. 4432 n. mi. 

= 0.010020000 

= 779. 80865 n. mi. 

= 806. 28279 n.mi. 

= 833   64220 n.mi. 

= 60.118205° 

Oj      =    99.999972° 

e2     =    100.529970c 

0,     =    101.069968t 

Ca8e(6):        a = 30" 

a = 16000 n. mi. 

e = 0.05 

p. = 1 1853. 595 n. mi. 

p = 1 1857. 068 n. mi. 

p- = 1 1860. 802 n.mi. 

8 = -20° 

9^ = 10° 

92 = 10.53° 

9, = 11.07° 

a 
a 

e 

P, 

9 

29.999986° 

15999. 892 n.mi. 

0.049994933 

11853. 585 n.mi. 

11857.057 n.mi. 

11860. 792 n.mi. 

-20.00322° 
o Oj      =    9.999997 

82     =    10.59997° 

9,     =     11.069997' 

Case ( 7) a 
a 

e 

P, 

9 
I 

ei 
9. 

9. 

30" 

16000 n. mi. 

0.30 

8113. 3207 n.mi. 

8126. 2608 n.mi. 

8139. 9188 n.mi. 

-20° 

10° 

10.53° 

11.07° 

e 

P 

9 
I 

9i 
9. 

9 

= 30.000009" 

= 16001. 358 n.mi. 

= 0.30005244 

= 8113. 3793 n.mi. 

= 8126. 3195 n.mi. 

= 8139. 977 n.mi. 

= -20.003833° 

= 9.99999° 

= 10. 529991° 

= 11.069992° 
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Case (8):       a        =    30° 
a ■ 16000 n.mi. 

e =0.45 

p = 5737.7629 n.mi. 

p = 5751.7785 n.mi. 

p_ = 5766. 6526 n. mi. 

0 = 20° 

e^ = 10° 

6. = 10.53° 

•a e,    =   ii.07o 

Case (9):       a       =    30° 
a = 16000 n.mi. 

e =0.60 

pj = 3294.5488 n.mi. 

P2 = 3307. 1798 n.mi. 

p- = 3320. 7864 n. mi. 

9 = -20° 

e^ = 10° 

9, = 10.53° 
'2 
e„ = 11.07° 

Case (10): a   = 30° 

a = 16000 n.mi. 

e = 0. 80 

Pj = 41.443169 n.mi. 

P2 = 44. 263139 n. mi. 

P3 = 65.061448 n.mi. 

9 = -20° 

e^ = 10° 

6» = 10.53° 
'2 
e, = 11.07° 

a r 30.000001° 

a = 16002.093 n. mi. 

e = 0.45006593 

Pi = 5737.8192 n. mi. 
a 

P2 = 5751. 8349 n. mi. 
*- 

e 
p 

= 

5766.7091 n. 

-19.99675° 

9.999990° 

mi. 

1 

e3 

s 10.529991° 

11.069992° 

a = 30.000021° 

a = 16003.720 n. mi. 

e s 0.60008761 

Pi = 3294.6052 n. mi. 
a 

P2 = 3307.2364 n. mi. 

P3 
e 
p 

9i 
92 
93 

- 

3320.8432 n. 

-19.99711° 

9.999987° 

mi. 

= 10.529990° 

11.069994° 

a = 29.999965° 

a = 15998.423 n. mi. 

e = 0.79998041 

Pi = 41.442664 n. mi. 
1 

P2 
= 44.262486 n. mi. 

P3 
e 
p 

9i 
9
2 

93 

r 

65.060481 n. 

-20.00039° 

10.000003° 

mi. 

= 10.529995° 

11.069987° 
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Cane (11) 

Case (12); 

a 

a 

e 

pl 
P2 
p3 

= 30" 

s -16000 n.mi. 

= 1.50 

= 12143. 289 n.mi. 

= 12169.763 n.mi. 

= 12197. 176 n.mi. 

= 10.0000° 

e2 = 10.5300" 

e3 = 11.0700° 

a = 30° 

a = -16000 n.mi. 

e r 20.0000 

Pj = 351905.91 n.mi. 

P2 = 353663.25 n.mi. 

P3 = 355449. 83 n.mi. 

91 = 10.000° 

e2 = 10.5300° 

e, = 11.0700° 

Pl 
p. 

29.999979" 

-15998. 314 n.mi. 

1.5000575 

12143.362 n.mi. 

12169. 836 n.mi. 

p-      ■     12197. 248 n. mi. 

Oj     =    9.999996° 

e2     =    10.529995° 

e3     =    11.069995° 

a = 29.99990° 

a = -15997.779 n.mi. 

e ■ 20.002653 

Pj = 351905.91 n.mi. 
P2 = 353663. 25 n.mi. 

p,      =    355449. 83 n.mi. 
o Oj     =    9.999992 

e2     =    10.529993* 

6,     =    11.069992* 
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Figure  1.    Geometry Relating Local Direction Angles of a Sattelite 

Position Vector  S. P. to the Direction Cosines,   in 

Inertial Coordinates,  of the Unit Vector p. = S.P^/ IS.P* I. 

The vectors   p. (i =  1,   2,   3) employed in Equation (19) have been 

referred to a geocentered inertial coordinate frame.    Direction angles of the 

vectors   p.   will,   however,   be observed with reference to the horizontal 

plane through  S.   and a vertical  vector  C.   (see Figure  1).    Let   \. 

denote the angle formed by the orthogonal projection of the unit vector 

p.   on the horizontal plane through  S.   and the east direction through 

S. (if 0  < \.   < TT/2 the bearing of S. Q,   is northeasterly).    Let  u. denote 

the elevation angle of the line of sight S. P.   above the horizontal plane 
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at S..    The direction ancles A,,   U. will be observed (measured) with 
i . i  - i   - 

respect to the unit vectors ^ .,   7]. ,   C- originating at S. directed in the 

east,   north,   and vertical directions respectively.     Let  l/.,   Ö . denote 

the colatitude and longitude of the location S. with respect to the 

inertial frame.    As defined in Section I,    s. = S.O.     Let the inertial 
i        i 

components of   -s. be denoted by x.,   y.,   z..    It follows from the 

geometry of Figure 1 that 

x.  = R sin V. cos 6 .,     y. = R sin V.  sin 6.,    z.  = R cos V. (34) 
i ii'i ill i 

The unit vectors  £.,   TJ. ,   C-    can be expressed in terms of inertial 1     'I    * i r 

coordinates by means of the equations 

-s. s. x s. s. 
t = -r1   .       ^. = —    .        I- = -rA (35) 

1      I »•   I 1       1 - ..,- . 1 - s.l s.   s. is 

in which the dot above the symbol denotes differentiation with respect 

to time t.    As t varies,   S. moves (due to the earth's angular rotation 

rate & ) in a constant latitude circle such that the components of - s. 

are given by 

5c. = - Rh sin V. sin 6.,   y. = R h sin v. cos 6-,    z. = 0. (36) 

The inertial components of the vectors 4-» T?> C- can now be readily 

calculated by means of Equations (34) through (36). The results are 

found to be 

i^ = -  sin 6., 4i2 = cos 6.. 4.3 = 0 

7)., = - cos   I/,  cos 6. ,       »7 , = - sin6. cos I/.,        TJ., =  sin v. (37) 
il 1 1 ic 1 1 i3 1 

C-, = sin I', cos 6 .,        C-.   = sin V. sin 6.»        £•? = cos 1/ ^il 1 1 i2 1 1 *i3 1 

« 
^ 
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From the definitions of the direction angles X. ,   ß. it follows that the 

vector p. is given by 

pi = (cos ^i. cos A.) £. +  (cos ^i. sin A.) fj. + (sin ^i.) Cj (38) 

The inertial components of the vector p. are found by substituting from 

Equations (37) into Equation (38) to be 

p., = - cos li.  cos X.  sin (j . - cos u.  sin X. cos U cos 6. 
•il 'i i i 'i i i i 

+   sin u.    sin  v.   cos   6. 

p.0= cos li.  cos X. cos 6. - cos u    sin X. sin (>.    cos v. 

+   sin   u.   sin  V.   sin  6., 

p.,  = cos u.   sin >    sin  V. +  sm u   cos v. 

Equations (39) provides the means of calculating the input data  p.. 

required by the method.     Knowledge of the tracking station locations 

(in inertial space) at the instants of time t.,   t?,   t, furnishes the 

values of 6. ,   v.,   i -  1,   2,   3.    The measurements of the observed 

local angles ß.,   X.  furnish the remaining required data.    The angle 

from the x-axis (of the inertial coordinate system) to the line of 

nodes is given by    Q = ^.   - \U. 

(39) 
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